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addition, research is needed to determine necessary and/or sufficient
convergence conditions with respect to the hill climbing random vari-
able,Rk(i; j), of the GHC algorithm; these conditions would provide
valuable guidance when defining aRk(i; j) that will allow the GHC
algorithm to solve the discrete optimization problem. Moreover, a con-
vergence theory based on various hill climbing random variables may
provide insight into a general convergence theory for a wide variety of
GHC algorithm formulations.
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A Robust Smith Predictor Modified by Internal Models for
Integrating Process with Dead Time

Milić R. Stojić, Milan S. Matijević, and Ljubǐsa S. Draganovic´

Abstract—The internal model principle and control together (IMPACT)
structure of the Smith predictor is proposed. The structure constructively
achieves both the robust stability and absorption of external disturbances.
In the structure design, the absorption principle is applied to enable the re-
jection of arbitrary class of deterministic disturbances and/or to suppress
the effects of low frequency stochastic external signals on the system output.
It is shown that the tuning of IMPACT structure is extremely simple due
to relatively small number of tuning parameters all having clear physical
meanings. The presented results of the simulation runs demonstrate the de-
sign procedure and illustrate the efficiency of the structure in disturbance
absorption.

Index Terms—Absorption principle, IMPACT structure, parameter
tuning, robust stability, Smith predictor.

I. INTRODUCTION

The concept of internal model consists in incorporation of the dis-
turbance or/and plant models into the control portion of the system in
order to suppress or even eliminate the effects of immeasurable ex-
ternal disturbances on the steady-state value of controlled variable and
to increase the system robustness with respect to changes or uncer-
tainties of plant parameters. Numerous papers have been published on
the subject and they may be classified in two groups according to dif-
ferent approaches: internal model principle (IMP) includes the model
or estimator of an external disturbance within the control section of the
system [1]–[5], and internal model control (IMC) is based upon the in-
clusion of the nominal plant model into the system control structure [6].
The IMC approach has been advantageously practiced in the design of
high-performance electrical drives and industrial processes.

Ya. Z. Tsypkin proposed the new control structure called internal
model principle and control together (IMPACT) composed by the IMP
and IMC [7]. It has been shown that many structures may be interpreted
as using IMP and/or IMC of some kind. Some suggested are that of
Tsypkin [8] with comparison toH1 andH2 optimal controllers for
controlling nonminimally phase control plants and with adaptation of
the IMP portion of controller [9]. Tsypkin and Nadezhdin [10] utilized
IMP for continuous-time control systems. The design of tracking sys-
tems with IMP and plants having a significantly long dead time has
been proposed in [11]. Komadaet al. proposed a new force control
strategies based upon IMP that are robust against immeasurable torque
disturbances and parameter variations of controlled electrical drives
[12]. The sensitivity properties of the IMPACT structure with respect to
measure noise were studied in [13]. See also the survey of IMP by Gon-
zales and Antsaklis [14]. Generally, the IMPACT structure excludes the
effects of a known class of external disturbance on controlled variable
and improves the system robustness with respect to changes of plant
parameters.

It has been shown by Morary and Zafiriou [6], that the classical
Smith predictor [15], which represents an effective compensator for a
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Fig. 1. IMPACT structure of the modified Smith predictor with one-input
internal nominal plant model.

stable process with large dead time, was in the category of an IMC
structure. Suitable modifications of Smith predictor have been pro-
posed in [16]–[18] in order to enable an undelayed estimate of output
and constructing of disturbance-compensating controller for a process
with an integrator and long dead-time. In [18], simple criteria for tuning
a dead-time compensator according to robust performance specifica-
tions for plants with an integrator mode and long dead-time are pro-
posed. Different schemes of the Smith predictor modification and their
comparison from the stand point of parameter setting and system ro-
bustness were presented in [19].

In this note, a new structure of the modified Smith predictor is
proposed for processes that can be described by an integrator, a
velocity gain and a long effective transport lag. The structure enables
absorption of general class of disturbances and can be easily tuned to
achieve the desired speed of set-point response and to maintain the
preferred system robustness with respect to interval changes and/or
uncertainties of plant parameters. The robustness analysis is given in
detail and several simulations are presented to illustrate the design
procedure and to confirm the structure ability in rejection of different
classes of disturbance.

II. SYSTEM CONTROL STRUCTURE

The IMPACT control structure of the modified Smith predictor is
shown in Fig. 1. For the analysis in this note, integrative industrial pro-
cesses will be considered and described by the following transfer func-
tion:

Gp(s) =
Kv

s(T1s+ 1)(T2s+ 1) � � � (Tns+ 1)
e��s (1)

where
Kv velocity gain factor;
� process dead time;
Ti (Ti > 0; i = 1; 2; . . .n) are process time constants.

The process transfer function may be rewritten as

Gp(s) =
Kv

s
+�G(s) e��s (2)

with

�G(s) =
k1

T1s+ 1
+

k2
T2s+ 1

+ � � �+
kn

Tns+ 1
(3)

where residueski(i = 1; 2; . . . ; n) are functions of velocity gainKv

and process time constantsTi. For a long dead time, one can assume
the nominal plant model as

Gpn(s) =
Kv

s
e�Ls (4)

whereL is an identified effective transport lag and�G(s) in (2) is an
unmodeled process dynamic. For the integrative plant (4), the propor-
tional main controllerGr(s) = Kr is applied.

The control portion within the system structure in Fig. 1 comprises
the Smith predictor internal controller, in the main loop, and two in-
ternal models, in the local minor loop: the internal nominal plant model
explicitly and the internal model of external disturbanced(t) embodied
in the transfer functionA(s)=C(s). Both the internal nominal plant
model and disturbance model are treated as a disturbance estimator.
Under the nominal case, the closed-loop transfer functionsy(s)=r(s)
andy(s)=d(s) are easily derived from Fig. 1 as

y(s)

r(s)
=

KrKv

s+KrKv

e�Ls (5)

and
y(s)

d(s)

=

1�
1

R(s)

A(s)

C(s)

Kv

s
e�Ls Kv 1+Kr

Kv

s
(1�e�Ls)

s+KrKv

e�Ls:

(6)

In virtue of (5) and (6), the speed of set-point response can be ad-
justed by choosing appropriate values of controller gainKr or domi-
nant time constantTr = 1=KrKv. Then, the absorption of an external
disturbance, speed of disturbance transient response, and the system ro-
bustness with respect to uncertainties of plant parameters are adjusted
by choosing the structure and parameters of the disturbance estimator.

Since term(1 � e�Ls)=s in the numerator of closed-loop system
transfer function (6) has the frequency characteristics of zero-order
hold, the speed of disturbance transient response is governed by the
roots of characteristic equation(s +KrKv)C(s) = 0. For example,
if one choosesC(s) = (Tos+ 1)n (see Section III), the characteristic
equation of disturbance estimator becomes

(s+KrKv)(Tos+ 1)n = 0: (7)

Thus, choosing proper values ofn and of tuning parameterTo, one
can settle the speed of disturbance absorption. In doing so, lower order
n and smaller value ofTo will correspond to a faster rejection of distur-
bance and a lower degree of system robustness, and vice versa. For the
sake of simplicity and easier physical realization, it is usually assumed
n = 2. The results of simulation runs, given later in this note, show
that, withn = 2, notable system robustness is attained. Hence, the
main feature of the IMPACT structure in Fig. 1, consists in extremely
simple and straightforward adjustments of the set-point transient re-
sponse, speed of absorption of an expected class of disturbance, and
degree of system robustness. This is accomplished independently; first
by choice of an appropriate value ofTr and then by setting of tuning
parameterTo.

Notice, due to the presence of integration mode in the internal one-
input nominal plant model, the structure of Fig. 1 is internally unstable.
This obstacle may be overcome by transforming the structure of Fig. 1
into the equivalent one having the internal two-input nominal plant
model, shown in Fig. 2, which is internally stable. In the structure of
Fig. 2, polynomialC(s) = (Tos+ 1)n is chosen.

III. PRINCIPLE OFABSORPTION

From (6), the steady-state error in the presence of a known class of
external disturbanced(t) will become zero if

lim s

�

1�
1

R(s)

A(s)

C(s)

Kv

s
e�Ls Kv 1 +Kr

Kv

s
(1� e�Ls)

s+KrKv

�e�Ls d(s) = 0

s! 0:

(8)
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Fig. 2. Internally stable IMPACT structure of the modified Smith predictor
with two-input internal nominal plant model.

In the case of integrative plant, the proper choice ofR(s) isR(s) =
Kv . Since

lim

Kv 1 +Kr

Kv

s
(1� e�Ls)

s+KrKv

e�Ls 6= 0

s! 0

(9)

the relation (8), forR(s) = Kv , is reduced to

lim s 1�
A(s)

sC(s)
e�Ls d(s) = 0

s! 0:

(10)

As it will be shown later, the stable polynomialC(s) is to be chosen
according to the desired speed of disturbance transient response and
degree of system robustness and then polynomialA(s) is determined
so to satisfy relation (10). Due to stability conditions, polynomialA(s)
must contain a single zero at the origin and thus it may be replaced
by A(s) = sA0(s); A0(0) 6= 0. With stable polynomialC(s) and
A(s) = sA0(s), relation (10) may be rewritten as

lim s C(s)� A0(s)e
�Ls d(s) = 0

s! 0:
(11)

For chosen stable polynomialC(s) and the class of polynomial dis-
turbancesd(t) = m

i=1
dit

i�1, polynomialA(s) is uniquely deter-
mined from (11) by calculating

lim
dk

dsk
C(s)� A0(s)e

�Ls = 0; 0 � k < m

s! 0
(12)

where, for example, for the constant, ramp, and parabolic disturbances
[or for d(s) = 1=s, d(s) = 1=s2, andd(s) = 1=s3], k = 0, k = 0
and 1, andk = 0, 1, 2, and so on.

However, most frequently disturbances may be considered as slow
varying and in these cases the polynomialA(s) should be calculated to
correspond to the ramp signald(t). As the experimental results given
later in this note will show, polynomialA(s) that corresponds to a ramp
disturbance efficiently absorbs constant, ramp, and slow varying distur-
bances and even it suppresses the effects of low frequency stochastic
external signals.

Hence, in the design of local minor loop inside the control structure
of Fig. 1 it is first necessary to chose polynomialC(s). This can be done
according to the desired speed of disturbance response and degree of
system robustness with respect to uncertainties of plant parametersKv

andL.
For the sake of clarity and to reduce the number of adjustable param-

eters, let us assumeC(s) = (Tos + 1)n. Then, for rejection of ramp
disturbance, relation (12) gives

A0(0) = 1; for k = 0 (13a)

dA0(s)

ds
=nT0 + L

or

A0(s) =A0(0) + s(nT0 + L); for k = 1 (13b)

wherefrom one calculatesA0(s) = s(nT0 + L) + 1 and the transfer
function inside the disturbance estimator becomes

1

R(s)

A(s)

C(s)
=

1

Kv

s [s(nTo + L) + 1]

(Tos+ 1)n
: (14)

The control part of IMPACT structure of modified Smith predictor
in Fig. 1 contains five parametersKv ,L,Kr, To, andn. Two of them,
plant parametersKv andL, are measured or estimated by simple ex-
periment. Other three parametersKr,To, andn are to be adjusted with
respect to prescribed speeds of set-point transient and disturbance tran-
sient responses and to the desired degree of system robustness with re-
spect to mismatches ofKv andL.

Moreover, it is possible to design the observer estimator that rejects
any kind of expected disturbance. To this end, suppose the class of
disturbances having the Laplace transformd(s) = N(s)=D(s). Then,
relation (11) is satisfied if the following equation holds:

C(s)� A0(s)e
�Ls = �(s)B(s) (15)

where�(s) represents the so-called absorption polynomial determined
by�(s) � D(s). For example, to the polynomial and sinusoidal distur-
bances (d(t) = m

i=1
dit

i�1 andd(t) = sin!t) correspond�(s) =
sm+1 and�(s) = s2 + !2, respectively.

To reduce (15) into polynomial equation, the exponential terme�Ls

is approximated by the finite power series

e�Ls =

N

k=0

(�Ls)k

k!
: (16)

Substitutinge�Ls from (16) into (15), relation (15) obtains the spe-
cific form of the Diophantine equation

A0(s)

N

k=0

(�Ls)k

k!
+B(s)�(s) = C(s): (17)

A single solution of the Diophantine equation, which plays a cru-
cial role in the design procedure of the observer estimator, proposed in
this note, does not exist [20]. Relation (17) is a linear equation in poly-
nomialsA0(s) andB(s). Generally, the existence of the solution of
the Diophantine equation is given in [21]. According to [21], there al-
ways exists the solution of (17) forA0(s) andB(s) if greatest common
factor of polynomials N

k=0
(((�Ls)k)=k!)and�(s) divides polyno-

mial C(s); then, the equation has many solutions. The particular so-
lution is constrained by the fact that the control law must be causal,
i.e.,degA(s) = 1 + degA0(s) � degC(s). Hence, after choosing
a stable polynomialC(s), N , and degrees of polynomialsA0(s) and
B(s), and inserting the absorption polynomial�(s) that corresponds
to an expected external disturbance, polynomialsA0(s) andB(s) are
calculated be equating coefficients of equal order from the left- and
right-hand sides of (17).

IV. ROBUSTNESSANALYSIS

Linear continuous models of finite orders fairly well approximate
dynamic behavior of plants at a low frequency range; disagreements
appear at high frequencies [6]. Differences between the nominal plant
Gpn(s) and real plantGp(s) appear due to unmodeled dynamics and
uncertainties and/or perturbations of plant parameters. In the robust-
ness analysis, real plantGp(s) is considered as a member of the infi-
nite family of plants within which each member more or less deviates
from the nominal plantGpn(s). Thus, the family describes all plants
and may be written as

P = Gp: jGp(j!)�Gpn(j!)j � la(!) (18)
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wherela(!) represents the additive bound of uncertainty. Note that, for
the same purpose, the so-called multiplicative bound of uncertainty is
used [6], [7]. Hence, each member of the family satisfies the relation

Gp(j!) = Gpn(j!) + la(j!) (19)

with jla(j!)j � la(!).
Suppose thatGp(s) andGpn(s) have the same number of unstable

poles (in the right half-plane) and that the desired closed-loop system
transfer functionGm(s) is stable. Then, each member of the family is
stable if and only if the following criterion of robust stability is satisfied
[6]: la(!) < �(!), where

�(!) =
Gpn(j!)

Gm(j!)

Gff(j!)

Gfb(j!)
(20)

while Gff (s) andGfb(s) are defined from

u(s) = Gff (s)r(s)�Gfb(s)y(s) (21)

as the transfer functions of feedforward and feedback portions of the
system control structure, respectively.

For the IMPACT structure of Fig. 2, one derives

�(!) =Kv

Trj!+ 1

j!

�
C(j!)

C(j!)+ (Trj! + 1� e�Lj!)A0(j!)
: (22)

From the above analysis, one can conclude that the design of minor
local loop of the IMPACT structure may contribute to the system ro-
bustness, but only for given interval changes and/or uncertainties of
plant parameters.

Notice from (22) that�(!) tends to a constant value at high fre-
quencies. Namely, if one choosesC(s) = (T0s + 1)n andA0(s) =
an�1s

n�1 + an�2s
n�2 + � � � + a1s + a0, then

lim �(!) =
KvTrT

n
0

Tn
0
+ Tran�1

;

for degC(s) = degA(s)(= 1 + degA0(s))

! !1:

(23a)

lim �(!) = KvTr; for degC(s) > degA(s)

! !1:
(23b)

It is evident from (22) that a greater value ofTr = 1=KrKv yields
a higher degree of system robustness. Consequently, to improve the
system robustness, the speed of set-point response must be slowed
down. The influence of disturbance estimator on system robustness will
be investigated by the illustrative example in the section that follows.

V. SIMULATION RESULTS

First, we shall investigate the influence of disturbance estimator on
system robustness. To this end, let us consider particular example of
the process given by [19]

Gp(s) =
0:1e�8s

s(1 + s)(1 + 0:5s)(1 + 0:1s)
(24)

with identified nominal plant model

Gpn(s) =
0:1e�9:7s

s
: (25)

In the example, the disturbance observer is designed to absorb ramp
disturbances. Thus, by setting pertinent valueTr = 2, andKv = 0:1,

Fig. 3. Influence of disturbance estimator parameters on the robust stability.

Fig. 4. The absorption of a constant disturbance.

C(j!) = (T0j!+ 1)n, andA0(j!) = (nT0 + 9:7)j!+ 1 into (22),
one obtains

�(!) = 0:1
2j!+ 1

j!

�
(T0j!+1)n

(T0j!+1)n+(2j!+1�e�9:7j!) [(nT0+9:7)j!+1]
:

(26)

In Fig. 3, the additive bound of uncertaintiesla(!) = jGp(j!) �
Gpn(j!)j is shown three times together with�(!) drawn forn = 2,
3, and 4 and for different values ofT0: (T01; T02; T03) = (9; 6; 3). In
virtue of Fig. 3, for a higher degreen of chosen polynomialC(s) and
a greater value of time constantT0, the system robustness improves.
In other words, lower speed of disturbance rejection corresponds to
the growth of system robustness, and vice versa. Recall that, in the ex-
ample, the observer estimator is designed to absorb ramp disturbances.
The same IMPACT structure with observer estimator

1

R(s)

A(s)

C(s)
=

1

Kv

s

(Tos+ 1)n
(27)

designed to reject constant disturbances will exhibit better robustness.
Generally, the design of the local minor loop for absorption of more
complex external disturbances requires a higher order of polynomial
A0(s) and, according to (22), results in a lower degree of robustness.
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Fig. 5. The absorption of a combined ramp disturbance.

Fig. 6. The absorption of a more complex disturbance.

To illustrate the efficiency of the IMPACT structure (Fig. 2) in dis-
turbance absorption, we consider the example of control plant given by
(24) and (25). In all simulation runs the reference isr(t) = 0:5 � 1(t)
andTr = 2. Fig. 4 explains by example the absorption of constant
disturbanced(t) = �0:2 � 1(t � 70). First, the structure in Fig. 2 is
designed to absorb a ramp disturbance by using transfer function (14),
with n = 2 andT0 = 1. Tracey1(t) of Fig. 4 shows the disturbance
response. Second, the structure is designed to absorb a constant distur-
bance using (27), withn = 2 andT0 = 1, and tracey2(t) is obtained.
In both cases, the constant disturbance is absorbed during the transient
and consequently does not affect the steady-state value of the output.

In the second example, the combined ramp disturbance shown in
Fig. 5 is applied. The structure in Fig. 2 is designed to absorb ramp
disturbances by transfer function (14), withn = 2 andT0 = 6. Fig. 5
illustrates the disturbance absorption. Notice from the figure that each
linear segment of the disturbance is absorbed after certain time period.

To emphasize the capability of the proposed IMPACT structure of
Fig. 2 for the absorption of an arbitrary class of disturbances, the more
complex disturbanced(t) = 0:25 sin(0:1(t � 37)) � 1(t � 37) �
0:02(t � 70) � 1(t � 70) is applied. To this disturbance corresponds

Fig. 7. The absorption of a noise contaminated slow varying disturbance.

absorption polynomial�(s) = s2(s2 + 0:12). Substituting�(s) into
(17) and choosingN = 4 andC(s) = (6s + 1)5, the Diophantine
equation (17) is solved forA0(s), using the procedure outlined in the
last paragraph of Section III, to obtainA(s) = sA0(s) = s(5057s3 +
287:5s2+39:7s+1). Fig. 6 illustrates the process of absorption during
the transient and complete rejection of disturbance in the steady state.

Most frequently disturbances are slow varying. Such a disturbance
contaminated with the white noise of variance 0.1 is shown in Fig. 7.
To insure its rejection, the structure in Fig. 2 is designed to absorb ramp
disturbances by using (14), withn = 2 andT0 = 6. Fig. 7 illustrates
the disturbance absorption and suppression of noise contamination.
The disturbance rejection may be further improved by choosingn = 1
and/or a smaller value ofT0. However, in doing so, one must maintain
the robust stability with respect to uncertainties of plant parameters.

VI. CONCLUDING REMARKS

We have proposed a new structure of the Smith predictor for con-
trol plants with the integration mode, velocity constant, process time
constants, and relatively long transport lag. It is to be noted that the
similar design procedure can be carried out in the case of static plants
by including theI-action into the main controller. The structure com-
prises the Smith controller and two internal models: the two-input nom-
inal plant model explicitly and model of disturbance embodied into the
disturbance estimator. The structure is internally stable and may be ad-
justed, according to the desired speed of set-point response and speed of
disturbance rejection, in a simple way by tuning only three parameters
having clear physical meanings. The observer estimator is designed by
the absorption principle, which enables the structure to absorb any class
of disturbances, arbitrary slow varying disturbances, and low frequency
stochastic external signals. It has been shown that the structure design
is possible for interval uncertainties of plant parameters. This constraint
can be taken into account by the additive bound of uncertainty and the
criterion of robust stability, employed in this note. Several simulation
results are presented to illustrate the design procedure and to demon-
strate the efficiency of the structure in disturbance rejection.
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Power Characterizations of Input-to-State Stability and
Integral Input-to-State Stability

D. Angeli and D. Něsić

Abstract—New notions of external stability for nonlinear systems are
introduced, making use of average powers as signal norms and comparison
functions as in the input-to-state stability (ISS) framework. Several new
characterizations of ISS and integral ISS are presented in terms of the new
notions. An example is discussed to illustrate differences and similarities of
the newly introduced properties.

Index Terms—Continuous-time, inputs, nonlinear, power, stability.

I. INTRODUCTION

The notion of input-to-state stability (ISS) has been now widely rec-
ognized and accepted as an important concept that is useful for a range
of nonlinear control problems (see [4]–[6]). Since its conception in
[11] a range of important equivalent characterizations of ISS have been
proved in the literature (see [9]–[13]). These characterizations lead to
a better understanding of the ISS property and provided the control en-
gineers with a range of new tools that can be used in nonlinear control.
ISS has been originally defined inL1 framework (see [11]) and it re-
quires roughly speaking that “no matter what the initial state is, if the in-
puts are uniformly small, then the state must eventually be small.” Re-
sults in [10] have shown that ISS systems also posses the property that
bounded energy inputs imply bounded energy states. On one hand, this
has shown that the ISS concept is more general than originally thought
since it also coversL2 stable systems. On the other hand, this research
has lead to the introduction of a new property, the so called integral
input-to-state stability property (iISS), which requires an ISS-like es-
timate for the solutions where theL1 norm of inputs is replaced by
some energy function. The iISS property has been shown to be a nat-
ural generalization of ISS and it is anticipated that it will be at least as
useful as ISS in the analysis of nonlinear control systems. A range of
equivalent characterizations of iISS have been presented in [2], [3], [7],
and [10], and they serve to better understand the property itself and to
provide new tools that may be useful in different situations.

The purpose of this note is to provide new definitions of ISS-like
and iISS-like properties. These are given in terms of powers of input
and/or state signals and are novel compared to previous characteriza-
tions since they describe the system’s behavior for different classes of
input signals. Since bounded power signals may fail to be uniformly
bounded or may have unbounded energy, for such signals power esti-
mates might turn out to be tighter than the ones provided by the original
ISS and iISS definitions. On the other hand, bounds expressed in terms
of averaged signals cannot be translated into hard bounds on pointwise
signal norms without some careful handling. Nevertheless, it is some-
what surprising that both ISS and iISS properties do have equivalent
“power” characterizations. For instance, under a mild assumption of
local stability we show that ISS is equivalent to the property that “no
matter what the initial state is, if thepowerof inputs is uniformly small,
then thepowerof state must eventually be small.”
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